• Users Online: 433
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 

   Table of Contents      
LETTER TO EDITOR
Year : 2018  |  Volume : 4  |  Issue : 1  |  Page : 40-42

Reperfusion injury in the age of revascularization


1 Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
2 Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA

Date of Submission22-Mar-2018
Date of Decision23-Mar-2018
Date of Acceptance27-Mar-2018
Date of Web Publication18-Apr-2018

Correspondence Address:
Dr. David Dornbos III
Department of Neurological Surgery, The Ohio State University Wexner Medical Center, N1014 Doan Hall, 410 W 10th Ave, Columbus, Ohio 43210
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bc.BC_5_18

Rights and Permissions

How to cite this article:
Dornbos III D, Ding Y. Reperfusion injury in the age of revascularization. Brain Circ 2018;4:40-2

How to cite this URL:
Dornbos III D, Ding Y. Reperfusion injury in the age of revascularization. Brain Circ [serial online] 2018 [cited 2022 Jul 5];4:40-2. Available from: http://www.braincirculation.org/text.asp?2018/4/1/40/230249

Significant advancements over the past several years in the endovascular treatment of acute ischemic stroke have substantially improved patient outcomes. The efficacy of mechanical thrombectomy within 6 h was first established following several clinical trials [1],[2],[3],[4],[5] and has recently been proven to be efficacious for up to 24 h following the onset of ischemia.[6],[7] The primary initial goal of endovascular intervention, recanalization of the occluded artery and reperfusion of downstream vessels, tends to be observed in approximately 80% of patients undergoing intervention. The success of this treatment modality in selected patients far exceeds the 20%–40% recanalization rate seen following tissue plasminogen activator alone.[8],[9]

While recanalization is the initial primary objective following an ischemic event and is essential for salvaging ischemic penumbra, reperfusion carries many deleterious effects as well. In many patients, despite robust restoration of perfusion, progressive stroke can still be observed despite maintaining vessel patency, due to secondary reperfusion injury. Several preclinical studies have directly observed this phenomenon with serial magnetic resonance imaging, in which the apparent diffusion coefficient was decreased at the end of a transient ischemic event, improved for several hours during reperfusion, and finally decreasing in a delayed fashion during secondary ischemic and inflammatory injury.[10]

Numerous mechanisms underlying ischemia/reperfusion injury have been defined, with three stages of reperfusion injury occurring in succession following successful recanalization.[11] The first stage is driven by increased metabolic demand, resulting in hyperemia with a loss of cerebral autoregulation and increased blood–brain barrier (BBB) permeability. Hemorrhagic transformation, if it occurs, tends to arise in this early stage of reperfusion. The second stage of reperfusion injury is marked by hypoperfusion, termed the “no-reflow effect.” Hypoperfusion and secondary occlusion have been attributed to metabolic depression, microvascular obstruction, and endothelial cell swelling and activation. This precipitates further ischemic injury and BBB breakdown and leads to the third stage, a marked inflammatory reaction and increased paracellular permeability, clinically resulting in cerebral edema.

Endothelial activation during ischemia generates a thromboinflammatory environment with profound microvascular dysfunction. Ischemic damage to the endothelial surface triggers a cascade of pro-inflammatory markers, promoting microvascular thrombosis. Following ischemia, an upregulation in the surface expression of P-selectin has been identified in both endothelial cells and platelets as early as 1 h following reperfusion.[12] P-selectin binds GPIbα, a glycoprotein that serves as the focal point of platelet adhesion, aggregation, and thrombus propagation.[13] During acute ischemic stroke and during hyperemic reperfusion, platelets tether to the vessel wall through interactions between GPIb and von Willebrand factor, promoting a prothrombotic intraluminal environment.[12] These interactions between endothelial cells, platelets, and leukocytes underlie the environment of thromboinflammation, serving to exacerbate secondary infarct growth following the initial ischemic insult. Further impeding microcirculatory flow, ischemia induces sustained pericyte contraction of microvessels downstream from the occluded parent vessel, despite successful reperfusion.[14] Sustained pericyte contraction and microthrombi in distal microvasculature impede flow following ischemia/reperfusion injury, ultimately leading to the “no-reflow effect.”

In addition to microvascular thrombosis, cerebral ischemia generates a strong inflammatory response. Upregulation of endothelial surface adhesion molecules and increased cytokine production during ischemia promotes lymphocyte, polymorphonuclear leukocyte, monocyte, and macrophage infiltration following reperfusion.[14] Reperfusion is also well known to enhance immune system activation in response to cell death programs triggered during ischemia in response to both necrotic tissues and apoptotic cells. Largely T-cell mediated, both antigen-specific and antigen-independent mechanisms have been found to play a significant role in continued cell death in the days following initial reperfusion.[14] Genetic and pharmacologic interventions have been shown to ameliorate this deleterious inflammatory response, providing robust neuroprotection.

In addition, reactive oxygen species and oxygen-free radical production increase dramatically during reperfusion. This impairs neuronal survival within ischemic tissues and penumbra and worsens functional recovery due to secondary injury. Several studies have evaluated the use of nitroxide radicals and other free radical scavengers in preclinical models, demonstrating neuroprotective function.[15] Treatment with free radical scavengers may be aided in part by increased BBB permeability and ease of passage into damaged parenchymal tissue.

BBB disruption is a common underlying factor in reperfusion injury, hemorrhagic transformation, and cerebral edema following an ischemic event. Starting during cerebral ischemia, reperfusion has been identified as the strongest predictor of early BBB disruption.[16] BBB disruption is frequently observed clinically, and can be radiographically visualized as delayed gadolinium or contrast enhancement in cerebrospinal fluid spaces. The loss of BBB permeability is detrimental in numerous ways, leading to increased vasogenic edema, a more robust inflammatory response, and endothelial cell swelling.

Although reperfusion induces numerous detrimental effects, early reperfusion is clearly needed to salvage remaining viable neurons within the ischemic core and peri-ischemic penumbra. In addition to protecting viable neurons, early reperfusion has also been shown to enhance survival of endothelial cells and pericytes in the ischemic core, promoting fibrosis and astrogliosis.[17] This has been shown to improve neuronal reorganization and functional recovery following stroke.

While approximately 80% of patients experience revascularization of an occluded vessel following endovascular treatment, only 40% of patients will achieve a good functional outcome following rehabilitation. Reperfusion of major intracranial arteries through thrombolysis or endovascular mechanical thrombectomy is clearly necessary to salvage brain tissue; however, simple restoration of cerebral flow is not solely adequate to prevent secondary infarct growth. Given the increasing number of patients being treated with endovascular thrombectomy at extended time windows, more patients are experiencing recanalization, and reperfusion injury will be observed with increasing frequency in patients following acute ischemic stroke. While reperfusion of ischemic brain tissue and penumbra undoubtedly generates improved clinical outcomes, finding new ways to mitigate the deleterious effects of reperfusion injury will continue to improve stroke outcomes.

Financial support and sponsorship

This work was supported in part by American Heart Association Grant-in-Aid (14GRNT20460246), and Merit Review Award (I01RX-001964-01) from the US Department of Veterans Affairs Rehabilitation R&D Service.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. Arandomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015;372:11-20.  Back to cited text no. 1
[PUBMED]    
2.
Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009-18.  Back to cited text no. 2
[PUBMED]    
3.
Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019-30.  Back to cited text no. 3
[PUBMED]    
4.
Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015;372:2296-306.  Back to cited text no. 4
    
5.
Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. T-PA alone in stroke. N Engl J Med 2015;372:2285-95.  Back to cited text no. 5
    
6.
Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708-18.  Back to cited text no. 6
    
7.
Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11-21.  Back to cited text no. 7
    
8.
Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: A meta-analysis. Stroke 2007;38:967-73.  Back to cited text no. 8
    
9.
Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: Real-world experience and a call for action. Stroke 2010;41:2254-8.  Back to cited text no. 9
    
10.
Neumann-Haefelin T, Kastrup A, de Crespigny A, Yenari MA, Ringer T, Sun GH, et al. Serial MRI after transient focal cerebral ischemia in rats: Dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 2000;31:1965-72.  Back to cited text no. 10
    
11.
Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012;79:S52-7.  Back to cited text no. 11
    
12.
Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: Novel insights and targets for treatment. Blood 2008;112:3555-62.  Back to cited text no. 12
    
13.
Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, et al. The glycoprotein ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999;190:803-14.  Back to cited text no. 13
    
14.
Eltzschig HK, Eckle T. Ischemia and reperfusion – From mechanism to translation. Nat Med 2011;17:1391-401.  Back to cited text no. 14
    
15.
Hosoo H, Marushima A, Nagasaki Y, Hirayama A, Ito H, Puentes S, et al. Neurovascular unit protection from cerebral ischemia-reperfusion injury by radical-containing nanoparticles in mice. Stroke 2017;48:2238-47.  Back to cited text no. 15
    
16.
Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004;35:2659-61.  Back to cited text no. 16
    
17.
Tachibana M, Ago T, Wakisaka Y, Kuroda J, Shijo M, Yoshikawa Y, et al. Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. Stroke 2017;48:2222-30.  Back to cited text no. 17
    



This article has been cited by
1 Phytochemicals as regulators of microglia/macrophages activation in cerebral ischemia
Lalita Subedi,Bhakta Prasad Gaire
Pharmacological Research. 2021; : 105419
[Pubmed] | [DOI]
2 Multiphase adjuvant neuroprotection: A novel paradigm for improving acute ischemic stroke outcomes
Wenbo Zhao,Chuanjie Wu,David Dornbos III,Sijie Li,Haiqing Song,Yuping Wang,Yuchuan Ding,Xunming Ji
Brain Circulation. 2020; 6(1): 11
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
References

 Article Access Statistics
    Viewed2081    
    Printed76    
    Emailed0    
    PDF Downloaded284    
    Comments [Add]    
    Cited by others 2    

Recommend this journal