• Users Online: 533
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2019  |  Volume : 5  |  Issue : 3  |  Page : 145-149

Brief overview: Protective roles of astrocyte-derived pentraxin-3 in blood-brain barrier integrity


1 Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
2 Department of Radiology; Department of Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Correspondence Address:
Dr. Ken Arai
Department of Radiology, Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts; Department of Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bc.bc_37_19

Rights and Permissions

Stroke is one of the world's leading causes of mortality and morbidity. Greater understanding is required of the underlying relationships in ischemic brains in order to prevent stroke or to develop effective treatment. This review highlights new findings about the relationship of blood–brain barrier with astrocytes, pentraxin-3 (PTX3), and other factors expressed during or after ischemic stroke. These are discussed with respect to their ameliorative or deleterious effects. These effects are measured in vivo in animal models as well as in vitro in cell cultures. Evidence was found to suggest that astrocytes play a key role in stroke by expressing PTX3, which, in turn, enhances endothelial tightness, increases tight junction proteins, and inhibits vascular endothelial growth factor. The role of astrocytes and PTX3 is examined in relation to hypoxic stress and conditioning as well as mitochondrial transfer. Astrocytes and PTX3 are placed in the context of brain circulation and related areas.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2137    
    Printed96    
    Emailed0    
    PDF Downloaded261    
    Comments [Add]    
    Cited by others 4    

Recommend this journal