• Users Online: 2169
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 6  |  Issue : 3  |  Page : 200-207

A preliminary exploration of acute intracranial pressure-cerebrospinal fluid production relationships in experimental hydrocephalus


1 Department of Chemical Engineering, Wayne State University, Detroit, Michigan, USA
2 Department of Chemical Engineering; Department of Biomedical Engineering; Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA

Correspondence Address:
Ahmad H Khasawneh
6135 Woodward Ave, Detroit, MI 48202
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bc.bc_42_20

Rights and Permissions

CONTEXT: By occluding the fourth ventricle simultaneously obtaining telemetric data on intracranial pressure (ICP) and cerebrospinal fluid (CSF) production, the authors of this study investigate a variety of physiologic parameters in cases of experimental hydrocephalus. AIMS: The aim of this study is to provide a new context on the disrupted homeostasis in hydrocephalus and guide toward improved treatment based on multiple physiological parameters. MATERIALS AND METHODS: Hydrocephalus was induced in ten 21-day-old Sprague–Dawley rats by blocking the flow of CSF to the fourth ventricle with kaolin. Ten days post induction, when physical signs of ventriculomegaly reached Evan's ratio (ER) of ≥0.46, CSF flow and ICP were measured while manipulating body position (0°, 45°, 90°) and heart rate. RESULTS: In hydrocephalic animals (ER ≥0.46), we found a near-steady average acute ICP (13.638 ± 2.331) compared to age-matched controls (ER <0.30) (13.068 ± 8.781), whose ICP fluctuated with the position. Hydrocephalic and controls exhibited an insignificant degree of parabolic shifts in CSF production when body position was changed from prone to 90° and again when moved back to the prone position, a trend more noteworthy in controls (P = 0.1322 and 0.2772). A Pearson's Correlation found CSF production and ICP to be correlated at baseline 0° posture (P = 0.05) in the control group, but not the hydrocephalic group. Weight appeared to play a role when animals were held at 90°. No significant changes in ICP or CSF flow patterns were observed when the heart rate was increased within either group. CONCLUSIONS: These preliminary findings suggest that our standard assumptions of posture-dependent changes in ICP created using data from physiologic data may be inaccurate in the hydrocephalic patient, and thus describe a need to further explore these relationships.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed21243    
    Printed12    
    Emailed0    
    PDF Downloaded1843    
    Comments [Add]    

Recommend this journal