• Users Online: 9202
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 8  |  Issue : 1  |  Page : 38-44

A retrospective anatomical study of the cerebral dural venous sinus outflow pathways utilizing three-dimensional rotational venography


1 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
2 Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA
3 Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
4 Department of Neurosurgery, University of California at Los Angeles, Los Angeles, California, USA

Correspondence Address:
Jeremiah N Johnson
UCLA Neurosurgery, 300 Stein Plaza 420, Los Angeles, California 90095
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bc.bc_76_21

Rights and Permissions

OBJECTIVE: Proper blood flow is essential for the maintenance of homeostasis for the human cerebrum. The dural venous sinuses comprise the dominant cerebral venous outflow path. Understanding the spatial configuration of the dural venous sinuses can provide valuable insight into several pathological conditions. Previously, only two-dimensional or cadaveric data have been used to understand cerebral outflow. For the first time, we applied three-dimensional rotational venography (3D-RV) to study and provide detailed quantitative morphological measurements of the terminal cerebral venous sinus system in several pathological states. SUBJECTS AND METHODS: Patients who underwent a 3D-RV procedure were identified by reviewing our local institution's endovascular database. Patients with high-quality angiographic images were selected. Eighteen patients were included (37.1 ± 3.8 years). Sinuses were divided into four segments, starting at the torcula and ending at the internal jugular vein. Segment length, 3D displacement, and cross-sectional area were measured. RESULTS: The transverse sinus (60.2 mm) was the longest segment, followed by the sigmoid sinus (55.1 mm). Cross-sectional areas were smallest at the middle of the transverse sinus (21.3 mm2) but increased at the sigmoid sinus (33.5 mm2) and at the jugular bulb (49.7 mm2). The only variation in displacements of venous flow was at the sigmoid-jugular junction, where 55% of cases had lateral displacements versus 45% medial, and 78% superior versus 22% inferior. CONCLUSIONS: We describe the terminal venous sinus system of patients with a variety of diagnoses, detailing segment length, cross-sectional area, and 3D path.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed552    
    Printed24    
    Emailed0    
    PDF Downloaded42    
    Comments [Add]    

Recommend this journal