Brain Circulation

REVIEW ARTICLE
Year
: 2021  |  Volume : 7  |  Issue : 1  |  Page : 23--28

Extracellular vesicle-based therapy for amyotrophic lateral sclerosis


Nadia Sadanandan1, Jea-Young Lee2, Svitlana Garbuzova-Davis2 
1 Georgetown University, Washington, DC, USA
2 Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA

Correspondence Address:
Svitlana Garbuzova-Davis
Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, FL
USA

Amyotrophic lateral sclerosis (ALS) stands as a neurodegenerative disorder characterized by the rapid progression of motor neuron loss in the brain and spinal cord. Unfortunately, treatment options for ALS are limited, and therefore, novel therapies that prevent further motor neuron degeneration are of dire need. In ALS, the infiltration of pathological elements from the blood to the central nervous system (CNS) compartment that spur motor neuron damage may be prevented via restoration of the impaired blood-CNS-barrier. Transplantation of human bone marrow endothelial progenitor cells (hBM-EPCs) demonstrated therapeutic promise in a mouse model of ALS due to their capacity to mitigate the altered blood-CNS-barrier by restoring endothelial cell (EC) integrity. Remarkably, the hBM-EPCs can release angiogenic factors that endogenously ameliorate impaired ECs. In addition, these cells may produce extracellular vesicles (EVs) that carry a wide range of vesicular factors, which aid in alleviating EC damage. In an in vitro study, hBM-EPC-derived EVs were effectively uptaken by the mouse brain endothelial cells (mBECs) and cell damage was significantly attenuated. Interestingly, the incorporation of EVs into mBECs was inhibited via β1 integrin hindrance. This review explores preclinical studies of the therapeutic potential of hBM-EPCs, specifically via hBM-EPC-derived EVs, for the repair of the damaged blood-CNS-barrier in ALS as a novel treatment approach.


How to cite this article:
Sadanandan N, Lee JY, Garbuzova-Davis S. Extracellular vesicle-based therapy for amyotrophic lateral sclerosis.Brain Circ 2021;7:23-28


How to cite this URL:
Sadanandan N, Lee JY, Garbuzova-Davis S. Extracellular vesicle-based therapy for amyotrophic lateral sclerosis. Brain Circ [serial online] 2021 [cited 2022 May 26 ];7:23-28
Available from: http://www.braincirculation.org/article.asp?issn=2394-8108;year=2021;volume=7;issue=1;spage=23;epage=28;aulast=Sadanandan;type=0