Users Online: 825
Home
About us
Editorial board
Ahead of print
Current issue
Search
Archives
Submit article
Instructions
Subscribe
Contacts
Login
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Table of Contents
Jul-Sep 2016
Volume 2 | Issue 3
Page Nos. 105-151
Online since Tuesday, October 18, 2016
Accessed 51,662 times.
PDF access policy
Journal allows immediate open access to content in HTML + PDF
EPub access policy
Journal allows immediate open access to content EPub format
View issue as eBook
Author Institution Mapping
Issue citations
Issue statistics
RSS
Show all abstracts
Show selected abstracts
Export selected to
Add to my list
EDITORIAL FOR THE SPECIAL ISSUE
Current challenges in regenerative medicine for central nervous system disorders
p. 105
Shaila Ghanekar, Sydney Corey, Connor Stonesifer, Trenton Lippert, Zachary Diamandis, Jake Sokol, Cesar V Borlongan
DOI
:10.4103/2394-8108.192516
PMID
:30276282
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (6) ]
[PubMed]
[Sword Plugin for Repository]
Beta
REVIEW ARTICLES
Tracking mesenchymal stem cells using magnetic resonance imaging
p. 108
Jens T Rosenberg, Xuegang Yuan, Samuel Grant, Teng Ma
DOI
:10.4103/2394-8108.192521
PMID
:30276283
Recent translational studies in the fields of tissue regeneration and cell therapy have characterized mesenchymal stem cells (MSCs) as a potentially effective and accessible measure for treating ischemic cerebral and neurodegenerative disorders such as stroke, Parkinson's disease, and amyotrophic lateral sclerosis. Developing more efficient cell tracking techniques bear the potential to optimize MSC transplantation therapies by providing a more accurate picture of the fate and area of effect of implanted cells. Currently, determining the location of transplanted MSCs involves a histological approach, but magnetic resonance imaging (MRI) presents a noninvasive paradigm that permits repeat evaluations. To visualize MSCs using MRI, the implanted cells must be treated with an intracellular contrast agent. These are commonly paramagnetic compounds, many of which are based on superparamagnetic iron oxide (SPIO) nanoparticles. Recent research has set out characterize the effects of SPIO-uptake on the cellular activity of
in vitro
human MSCs and the resultant influence that respective SPIO concentration has on MRI sensitivity. As these studies reveal, SPIO-uptake has no effect on the cellular processes of proliferation and differentiation while producing high contrast MRI signals. Moreover, transplantation of SPIO-labeled MSCs in animal models encouragingly showed no loss in MRI contrast, suggesting that SPIO labeling may be an appealing regime for lasting MRI detection. This study is a review article. Referred literature in this study has been listed in the reference part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors' experiences.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (11) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Intra-arterial delivery of mesenchymal stem cells
p. 114
Mitsuyoshi Watanabe, Dileep R Yavagal
DOI
:10.4103/2394-8108.192522
PMID
:30276284
While treatments have been developed to combat stroke, such as intravenous recombinant tissue plasminogen activator and endovascular recanalization therapies, their ability to decrease the long-term disability that accompanies stroke is limited. Currently, stem cell research focused on mesenchymal stem cells (MSCs). MSCs are multipotent, nonhematopoietic stem cells found in the stromal fraction of the bone marrow, along with the connective tissue of most organs. MSCs are an increasingly appealing cell source due to the relative ease in which they can be retrieved, developed, and handled
in vitro
. Despite the fact that numerous paths of stem cell transport to the brain in acute ischemic stroke (AIS) exist, the intra-arterial (IA) route of stem cell transport is most attractive. This is due to its great potential for clinical translation, especially considering the growing clinical application of endovascular treatment for AIS. Here, we evaluate research examining IA delivery of MSCs to the stroke region. The results of the study revealed the maximum tolerated dose and that the optimal time for administration was 24 h, following cerebral ischemia. It is important that future translational studies are performed to establish IA administration of MSCs as a widely used treatment for AIS.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (17) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Reducing excitoxicity with glutamate transporter-1 to treat stroke
p. 118
Yun Wang, Brandon K Harvey
DOI
:10.4103/2394-8108.192523
PMID
:30276285
The neurotransmitter glutamate is released following ischemic brain damage, and its excitotoxic effects contribute greatly to the development of stroke. Because this release of glutamate occurs within minutes, therapeutic drugs targeting the restriction of glutamate-induced excitotoxicity must be administered quickly following ischemic onset. Here, we evaluate an alternative research approach examining the overexpression of glutamate transporter 1 (GLT1) to reduce infarction and improve behavioral deficits induced by stroke in a rat model of stroke. Recent studies verify the role of glutamate overflow in the pathogenesis of stroke. The experimental approach evaluated glutamate clearance, following ischemia-induced overflow where the GLT had been genetically manipulated to be overexpressed in the ischemic region. A viral vector-mediated gene transfer approach activated the overexpression of GLT1 to successfully reduce ischemia-induced glutamate overflow, decrease cell death, and improve behavioral recovery among animal models. These findings further support the role of glutamate in the pathogenesis of stroke and the upregulation of endogenous GLT1 as a promising approach to protect against the effects of ischemic brain damage caused by glutamate excitotoxicity. This study is a review article. Referred literature in this paper has been listed in the references part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and our experiences.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Clinical application of oligodendrocyte precursor cells for cell-based therapy
p. 121
Naohiro Egawa, Hajime Takase, Lok Josephine, Ryosuke Takahashi, Ken Arai
DOI
:10.4103/2394-8108.192515
PMID
:30276286
Oligodendrocyte precursor cells (OPCs), which give rise to mature oligodendrocytes (OLs), play important roles in maintaining white matter function. Even during the adulthood period, OPCs comprise roughly 5% of all cells in the forebrain and retain a capability to become myelinated OLs. Recently, OPCs have been proposed as a novel source for cell-based therapy. For the purpose, OPCs can be obtained from embryonic stem cells, induced pluripotent stem cells, and directly converted cells derived from patients. Here, we will provide a brief review of the potential of using OPCs as a cell-based therapy for treating various neurological diseases.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (7) ]
[PubMed]
[Sword Plugin for Repository]
Beta
A polarizing view on posttraumatic brain injury inflammatory response
p. 126
Susanna Rosi
DOI
:10.4103/2394-8108.192517
PMID
:30276287
Traumatic brain injury (TBI) activates the simultaneous proliferation of various pro- and anti-inflammatory molecules. Considering the amount of factors participating, this response is naturally complex. However, there is an increasing trend in neurotrauma research to delineate the injury-induced inflammatory responses within the constraints of
in vitro
defined macrophage polarization phenotypes “M1” and “M2”. Here, we evaluate research examining the complexity of the inflammatory response that cannot be so easily characterized using this binary nomenclature. TBI is demonstrated to induce a broad spectrum of simultaneous expression responses involving both pro- and anti-inflammatory reactions. Specifically, the research revealed a very heterogeneous parenchymal landscape associated with TBI. The concurrent expression of both “M1” and “M2” phenotypic markers on the microglia/macrophages involved suggests that the polarization phenotypes cannot be neatly defined in this M1/M2 paradigm. Recent studies displaying neurotrauma also report similar conflict with the constraints of this binary categorization of “M1/M2”, demonstrating that microglia/macrophages cannot effectively cross-over to strictly polarized “M1-only” or “M2-only” phenotype. Therefore, the complex signaling events surrounding this response indicate that a binary M1/M2 characterization is not adequate to define inflammatory profile. This paper is a review article. Referred literature in this paper has been listed in the references part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors' experiences.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (14) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Finding effective biomarkers for pediatric traumatic brain injury
p. 129
Olena Y Glushakova, Alexander V Glushakov, Ronald L Hayes
DOI
:10.4103/2394-8108.192518
PMID
:30276288
As traumatic brain injury (TBI) continues to affect children and young adults worldwide, research on reliable biomarkers grows as a possible aid in determining the severity of injury. However, many studies have revealed that diverse biomarkers such as S100B and myelin basic protein (MBP) have many limitations, such as their elevated normative concentrations in young children. Therefore, the results of these studies have yet to be translated to clinical applications. However, despite the setbacks of research into S100B and MBP, investigators continue to research viable biomarkers, notably glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1), as possible aids in medical decision making. Studies have revealed that GFAP and UCH-L1 actually are better predictors of injury progression than the before-mentioned biomarkers S100B and MBP. In addition, UCH-L1 has demonstrated an ability to detect injury while CT is negative, suggesting an ability to detect acute intracranial lesions. Here, we evaluate research testing levels of GFAP and UCH-L1 on children diagnosed with TBI and compare our results to those of other tested biomarkers. In a recent study done by Hayes
et al
., GFAP and UCH-L1 demonstrated the potential to recognize children with the possibility of poor outcome, allowing for more specialized treatments with clinical and laboratory applications. Although studies on GFAP and UCH-L1 have for the most part warranted positive results, further studies will be needed to confirm their role as reliable markers for pediatric TBI.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
[Sword Plugin for Repository]
Beta
Creatine supplementation improves neural progenitor cell survival in Huntington's disease
p. 133
Robert H Andres, Theo Wallimann, Hans R Widmer
DOI
:10.4103/2394-8108.192519
PMID
:30276289
Preclinical and clinical studies suggest that striatal transplantation of neural stem cells (NSCs) and neural progenitor cells (NPCs) may be an appealing and valuable system for treating Huntington's disease. Nevertheless, for a neural replacement to become an effective translational treatment for Huntington's disease, a certain number of difficulties must be addressed, including how to improve the integration of transplanted cell grafts with the host tissue, to elevate the survival rates of transplanted cells, and to ensure their directed differentiation into specific neuronal phenotypes. Research focusing on the translational applications of creatine (Cr) supplementation in NSC and NPC cell replacement therapies continues to offer promising results, pointing to Cr as a factor with the potential to improve cell graft survivability and encourage differentiation toward GABAergic phenotypes in models of striatal transplantation. Here, we evaluate research examining the outcomes of Cr supplementation and how the timing of supplementation regimes may affect their efficacy. The recent studies indicate that Cr's effects vary according to the developmental stage of the cells being treated, noting the dynamic differences in creatine kinase expression over the developmental stages of differentiating NPCs. This research continues to move Cr supplementation closer to the widespread clinical application and suggests such techniques warrant further examination.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (5) ]
[PubMed]
[Sword Plugin for Repository]
Beta
A therapeutic shock propels Schwann cells to proliferate in peripheral nerve injury
p. 138
Christina MAP Schuh, Thomas Hausner, Heinz R Redl
DOI
:10.4103/2394-8108.192520
PMID
:30276290
Damage to the peripheral nervous system (PNS) is a prevalent issue and represents a great burden to patients. Although the PNS has a good capacity for regeneration, regeneration over long distances poses several difficulties. Several recent studies have addressed Schwann cells' limited proliferative capacity; however, a solution has yet to be found. Here, we examine the effects of extracorporeal shock wave therapy (ESWT) on Schwann cell isolation, culture, and proliferation rate. The study conducted demonstrated that Schwann cells treated with ESWT had significantly improved isolation, culture, and proliferative capacities. These findings represent a solution to a significant problem that hospitals and health-care providers face every year: how to treat long distance damage to the PNS with the limited proliferative capabilities of Schwann cells. Although these findings are promising, further studies must be conducted to address the molecular mechanisms by which ESWT alters Schwann cells and the potential implications for peripheral nerve damage and other prevalent illnesses. This study is a review article. Referred literature in this paper has been listed in the references part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors' experiences.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (9) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Nonhuman primate model in clinical modeling of diseases for stem cell therapy
p. 141
Gourav R Choudhury, Jeffrey Kim, Patrice A Frost, Raul A Bastarrachea, Marcel M Daadi
DOI
:10.4103/2394-8108.192524
PMID
:30276291
Nonhuman primates (NHPs) are alike humans in size, behavior, physiology, biochemistry, and immunology. Given close similarities to humans, the NHP model offers exceptional opportunities to understand the biological mechanisms and translational applications with direct relevance to human conditions. Here, we evaluate the opportunities and limitations of NHPs as animal models for translational regenerative medicine. NHP models of human disease propose exceptional opportunities to advance stem cell-based therapy by addressing pertinent translational concerns related to this research. Nonetheless, the value of these primates must be carefully assessed, taking into account the expense of specialized equipment and requirement of highly specialized staff. Well-designed initial fundamental studies in small animal models are essential before translating research into NHP models and eventually into human trials. In addition, we suggest that applying a directed and collaborative approach, as seen in the evolution of stroke NHP models, will greatly benefit the translation of stem cell therapy in other NHP disease models.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (2) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Science, ethics and communication remain essential for the success of cell-based therapies
p. 146
Massimo Dominici, Karen M Nichols, Aaron D Levine, John EJ Rasko, Miguel Forte, Lynn O'Donnell, Mickey BC Koh, Catherine M Bollard, Daniel J Weiss
DOI
:10.4103/2394-8108.192525
PMID
:30276292
Cell-based therapeutics, such as marrow or peripheral blood stem cell transplantation, are a standard of care for certain malignancies. More recently, a wider variety of cell-based therapeutics including the use of mesenchymal stromal/stem cells, T-cells, and others show great promise in a wider range of diseases. With increased efforts to expand cell-based treatments to several clinical settings, many institutions around the world have developed programs to explore cellular therapy's potential for safe and effective applications. In legitimate investigations, usually conducted through academic centers or biotechnology industry-sponsored efforts, these studies are regulated and peer-reviewed to ensure safety and clear determination of potential efficacy. However, in some cases, the use of cell-based approaches is conducted with insufficient preclinical data, scientific rationale, and/or study plan for the diseases claimed to be treated, with patients being charged for these services without clear evidence of clinical benefit. In this context, patients may not be properly informed regarding the exact treatment they are receiving within a consenting process that may not be completely valid or ethical. Here, the authors emphasize the importance of distinguishing “proven cell-based therapies” from “unproven” and unauthorized cell-based therapies. This publication also addresses the necessity for improved communication between the different stakeholders in the field, patient associations, and advocacy groups in particular, to favor medical innovation and provide legitimate benefits to patients. Considering the progressive growth of cell-based treatments, their increasing therapeutic value and the expectation that society has about these therapies, it is critically important to protect patients and ensure that the risk/benefit ratio is favorable. This paper is a review article. Literature referred to in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors' experiences.
[ABSTRACT]
[HTML Full text]
[PDF]
[Mobile Full text]
[EPub]
[Citations (4) ]
[PubMed]
[Sword Plugin for Repository]
Beta
Next Issue
Previous Issue
Sitemap
|
What's New
|
Feedback
|
Disclaimer
|
Privacy Notice
© Brain Circulation | Published by Wolters Kluwer Health -
Medknow
Online since 16
th
March, 2015