Close
  Brain Circ
 

Figure 1: Schematic diagram of the mechanism of action of pregabalin. Pregabalin binds to the α2 δ auxiliary subunit of presynaptic voltage-gated calcium channels decreasing the calcium influx. This decreases the intracellular calcium that reduces the release of excitatory neurotransmitters. Furthermore, it is represented the most acceptable hypothesis for chronic pain, which is the activation of the astrocyte by an inciting event leading to indirect interaction with the α2 δand promoting the calcium influx causing to neurokinin release. In this way, the pregabalin binding in α2 δ decreases/interrupts this misleading pathway

Figure 1: Schematic diagram of the mechanism of action of pregabalin. Pregabalin binds to the α2 δ auxiliary subunit of presynaptic voltage-gated calcium channels decreasing the calcium influx. This decreases the intracellular calcium that reduces the release of excitatory neurotransmitters. Furthermore, it is represented the most acceptable hypothesis for chronic pain, which is the activation of the astrocyte by an inciting event leading to indirect interaction with the α2 δand promoting the calcium influx causing to neurokinin release. In this way, the pregabalin binding in α2 δ decreases/interrupts this misleading pathway