Close
  Brain Circ
 

Figure 1: Regulation of PH on gluconeogenesis through HIF-1α/XBP-1/FoxO1. Gluconeogenesis is a multistep metabolic process that generates glucose from pyruvate or a related three-carbon compound (lactate, alanine). Conversion of pyruvate to PEP via oxaloacetate, catalyzed by pyruvate carboxylase and PEP carboxy kinase is one of the irreversible steps in the gluconeogenic pathway. HIF-1α regulation and XBP-1-FoxO Signal play the key roles in gluconeogenic activity through PCKs. HIF: Hypoxia-inducible factor, XBP-1: X-box binding protein 1, FoxO: Forkhead box O, PEP: Phosphoenolpyruvate, PH: Pharmacological hypothermia, ROS: Reactive oxygen species, OAA: Oxaloacetate, PCK: Phosphoenolpyruvate carboxykinase, ER: Endoplasmic reticulum

Figure 1: Regulation of PH on gluconeogenesis through HIF-1α/XBP-1/FoxO1. Gluconeogenesis is a multistep metabolic process that generates glucose from pyruvate or a related three-carbon compound (lactate, alanine). Conversion of pyruvate to PEP via oxaloacetate, catalyzed by pyruvate carboxylase and PEP carboxy kinase is one of the irreversible steps in the gluconeogenic pathway. HIF-1α regulation and XBP-1-FoxO Signal play the key roles in gluconeogenic activity through PCKs. HIF: Hypoxia-inducible factor, XBP-1: X-box binding protein 1, FoxO: Forkhead box O, PEP: Phosphoenolpyruvate, PH: Pharmacological hypothermia, ROS: Reactive oxygen species, OAA: Oxaloacetate, PCK: Phosphoenolpyruvate carboxykinase, ER: Endoplasmic reticulum